The generator matrix

 1  0  1  1  1 X+2  1  1  2  1  1  2  X  X  1  1  1  1  0  1  1 X+2  1  1  1  1  1  1  0  1  1  X X+2 X+2 X+2  1  1  1  1  1  0  1  0  2  1  1  1  1  X  1  1  X  1  1  0  2  2  2  1  1 X+2  X  1  1 X+2  X  1  X  2  2
 0  1  1 X+2 X+1  1  3  2  1  X X+3  1  1  1  0  1 X+2  2  1 X+3  X  1  1 X+3 X+3  1 X+1  0  1  3  X  1  1  1  1  0 X+2  0  1 X+3  1 X+2  1  1  2 X+2 X+1  3  0  2 X+2 X+2 X+1  3  1  1  1  1  2  1  1 X+2  X  1  1  1 X+3  1  0  X
 0  0  X  0  2  0  2  X  X  X  X X+2  0  X  0 X+2 X+2 X+2  0  2  0 X+2  2 X+2  X  X  0 X+2 X+2  0 X+2 X+2  2  X  2  2  2  X  0  0  X  X  2  2  2  2 X+2 X+2  2  2  0  0 X+2  X  2  2  0  X X+2  0 X+2 X+2 X+2  2  X  0 X+2  X  X  2
 0  0  0  2  2  2  0  2  2  0  2  0  0  0  2  0  2  0  2  2  0  2  0  2  0  2  0  0  0  2  2  2  2  0  0  2  0  2  2  0  2  0  2  0  0  2  0  2  2  2  0  2  2  0  0  2  2  0  2  0  0  0  0  2  2  2  0  0  2  2

generates a code of length 70 over Z4[X]/(X^2+2,2X) who�s minimum homogenous weight is 67.

Homogenous weight enumerator: w(x)=1x^0+48x^67+195x^68+16x^69+49x^70+40x^71+98x^72+16x^73+10x^74+6x^75+25x^76+3x^78+1x^82+1x^88+1x^90+2x^91

The gray image is a code over GF(2) with n=280, k=9 and d=134.
This code was found by Heurico 1.16 in 36.6 seconds.